000 01656nam a22002537a 4500
999 _c360
_d360
003 OSt
005 20180615124002.0
008 160628b xxu||||| |||| 00| 0 eng d
020 _a9780070087705
040 _aDBCETL
041 _aEng.
082 _a001.535
_bRIC
100 _aRich, Elaine
245 _aArtificial intelligence
250 _a3rd ed.
260 _aNew Delhi. :
_bTata McGraw-Hill
_c2010
300 _axviii, 568 p.;
_bPAPER BACK
_c23 cm.
500 _aComputer Science
505 _aCONTENTS: Preface to the third edition Preface to the second edition Part I: Problems and search 1. What is artificial intelligence? 2. Problems, problem spaces and search 3. Heuristic search techniques Part II: Knowledge representation 4. Knowledge representation issues 5. Using predicate logic 6. Representing knowledge using rules 7. Symbolic reasoning under uncertainty 8. Statistical reasoning 9. Weak slot-and-filler structures 10. Strong slot-and -filler structures 11. Knowledge representation summary Part III: Advanced topics 12. Game playing 13. Planning 14. Understanding 15. Natural language processing 16. Parallel and distributed AI 17. Learning 18. Connectionist models 19. Common sense 20. Expert systems 21. Perception and action 22. Fuzzy logic systems 23. Genetic algorithms: copying nature's approaches 24. Artificial immune systems 25. Prolog - The natural language of artificial intelligence 26. Conclusion References Author index Subject index
520 _aArtificial, intelligence.
653 _aComputer Science, IT
700 _aKnight, Kevin
700 _aNair, Shivashankar B