000 01351nam a22002417a 4500
999 _c7401
_d7401
003 OSt
005 20190201113936.0
008 190201b xxu||||| |||| 00| 0 eng d
020 _a9788126518050
040 _aACL
041 _aENG
082 _a519.0
_bFEL
100 _aFeller, William
245 _aAn introduction to probability theory and its applications
250 _a3rd ed.
260 _aNew Delhi:
_bWiley,
_c2018.
300 _axviii, 499p.;
_bPAPER BACK
_c21 cm.
440 _vVol. 1
500 _aMathematics
505 _aContents; 1. Introduction: The Nature of Probability Theory 2. The Sample Space 3. Elements of Combinatorial Analysis 4. Fluctuations in Coin Tossing and Random Walks 5. Combination of Events 6. Conditional Probability, Stochastic Independence 7. The Binomial and the Poisson Distribution 8. The Normal Approximation to the Binomial Distribution 9. Unlimited Sequences of Bernoulli Trials 10. Random Variables; Expectation 11. Laws of Large Numbers 12. Integral Valued Variables, Generating Functions 13. Compound Distributions, Branching Process 14. Recurrent Events. Renewal Theory 15. Random Walk and Ruin Problems 16. Markov Chains 17. Algebraic Treatment of Finite Markov Chains 18. The Simplest Time-Dependent Stochastic Processes
520 _aProbability
653 _aMathematics